25 Asymptotic Rays and Triangles

Definition (open triangle (or a biangle)). Let A, and $\overrightarrow{B C} \subseteq \ell^{\prime}$ with $\overrightarrow{A D} \mid \overrightarrow{B C}$.
B, C, D be four points in a neutral geometry, such that no three are collinear, with C and D on the same side of $\overleftrightarrow{A B}$, and $\overleftrightarrow{A D} \| \overleftrightarrow{B C}$. Then the set $\triangle D A B C=\overrightarrow{A D} \cup \overrightarrow{A B} \cup \overrightarrow{B C}$ is is an open triangle (or a biangle).
Definition (strictly asymptotic). Let $\triangle D A B C$ be an open triangle. $\overrightarrow{B C}$ is strictly asymptotic to $\overrightarrow{A D}$ if for every $E \in \operatorname{int}(\measuredangle A B C), \overrightarrow{B E}$ intersects $\overrightarrow{A D}$.
Definition (equivalent, asymptotic). Two rays $\overrightarrow{P Q}$ and $\overrightarrow{R S}$ are equivalent (written $\overrightarrow{P Q} \sim \overrightarrow{R S}$) if either $\overrightarrow{P Q} \subseteq \overrightarrow{R S}$ or $\overrightarrow{R S} \subseteq \overrightarrow{P Q}$. The ray $\overrightarrow{B C}$ is asymptotic to the ray $\overrightarrow{A D}$ (written $\overrightarrow{B C} \mid \overrightarrow{A D}$) if either $\overrightarrow{B C}$ is strictly asymptotic to $\overrightarrow{A D}$ or $\overrightarrow{B C} \sim \overrightarrow{A D}$.

1. Prove that \sim is an equivalence relation on the set of rays in a metric geometry.
Definition (asymptotic (or closed) triangle). The open triangle $\triangle D A B C$ is called an asymptotic (or closed) triangle if $\overrightarrow{A D} \mid \overrightarrow{B C}$.
Definition (asymptotically parallel). Two lines ℓ and ℓ^{\prime} are asymptotic, or asymptotically parallel (written $\ell \mid \ell^{\prime}$), if there are rays $\overrightarrow{A D} \subseteq \ell$
2. Prove that in a neutral geometry which satisfies EPP, $\ell \| \ell^{\prime}$ if and only if $\ell \mid \ell^{\prime}$.
3. Let $\{\mathcal{S}, \mathcal{L}, d, m\}$ be a neutral geometry such that whenever $\ell_{1} \| \ell_{2}$ then there is a line ℓ^{\prime} perpendicular to both ℓ_{1} and ℓ_{2}. Prove that EPP is satisfied.
4. Let $\triangle D A B C$ be an open triangle. What should be the definition of the interior of $\triangle D A B C$? Show that $\operatorname{int}(\triangle D A B C)$ is convex.
5. In a neutral geometry, suppose that $\angle D A B C$ is an asymptotic triangle. If $\ell \cap \operatorname{int}(\triangle D A B C) \neq \emptyset$, prove that $\ell \cap \triangle D A B C \neq \emptyset$.
6. In a neutral geometry, if $\overleftrightarrow{A B}\|\overleftrightarrow{C D}, \overleftrightarrow{C D}\| \overleftrightarrow{E F}$ and $A-C-E$ prove that $\overleftrightarrow{A B} \| \overleftrightarrow{E F}$
7. Let $A(0,1)$ and $D(0,2)$. Sketch two different asymptotic triangles $\measuredangle D A B C$ in \mathcal{H} for some choices of B and C. How many are there? If $E(1,1)$ find the unique ray $\overrightarrow{E F}$ with $\overrightarrow{E F} \mid \overrightarrow{A D}$. (See 25.4)
8. In the Poincaré Plane let $A(1,1)$ and $B(1,5)$.
(a) Sketch five rays asymptotic to $\overrightarrow{A B}$; (b)

Sketch five rays asymptotic to $\overrightarrow{B A}$.

IMPORTANT RESULTS (Asymptotic Rays and Triangles)

(25.1) In a neutral geometry if $\overrightarrow{B C} \sim \overrightarrow{B^{\prime} C^{\prime}}$, and $\overrightarrow{B C} \mid \overrightarrow{A D}$, then $\overrightarrow{B^{\prime} C^{\prime}} \sim \overrightarrow{A D}$.
(25.2) In a neutral geometry if $\overrightarrow{A D} \sim \overrightarrow{A^{\prime} D^{\prime}}$, and $\overrightarrow{B C} \mid \overrightarrow{A D}$, then $\overrightarrow{B C} \sim \overrightarrow{A^{\prime} D^{\prime}}$.
(25.3) In a neutral geometry if $\overrightarrow{A D} \sim \overrightarrow{A^{\prime} D^{\prime}}, \overrightarrow{B C} \mid \overrightarrow{B^{\prime} C^{\prime}}$, and $\overrightarrow{B C} \sim \overrightarrow{A D}$ then $\overrightarrow{B^{\prime} C^{\prime}} \sim \overrightarrow{A^{\prime} D^{\prime}}$.
 $\overrightarrow{B C} \mid \overrightarrow{A D}$.
(25.5) In a neutral geometry, if $\overrightarrow{B C} \mid \overrightarrow{A D}$ then $\overrightarrow{A D} \mid \overrightarrow{B C}$ also.
(25.6) Let $\overleftrightarrow{A B}, \overleftrightarrow{C D}$ and $\overleftrightarrow{E F}$ be distinct lines in a neutral geometry. If $\overrightarrow{A B} \mid \overrightarrow{C D}$ and $\overrightarrow{C D} \mid \overrightarrow{E F}$ then there is a line ℓ which intersects all three lines $\overleftrightarrow{A B}, \overleftrightarrow{C D}$ and $\overleftrightarrow{E F}$
(25.7) In a neutral geometry, if $\overrightarrow{A B} \mid \overrightarrow{C D}$ and $\overrightarrow{C D} \mid \overrightarrow{E F}$ then $\overrightarrow{A B} \mid \overrightarrow{E F}$.
(25.8) (Congruence Theorem for Asymptotic Triangles) In a neutral geometry, if $\triangle D A B C$ and $\triangle S P Q R$ are two asymptotic triangles with $\overline{A B} \cong \overline{P Q}$ and $\measuredangle A B C \cong \measuredangle P Q R$, then $\measuredangle B A D \cong \measuredangle Q P S$.
(25.9) In a neutral geometry which satisfies HPP, if two distinct lines ℓ and ℓ^{\prime} have a common perpendicular, then the lines are parallel but not asymptotic.

