Asymptotic Rays and Triangles 25

Definition (open triangle (or a biangle)). Let A, and $\overrightarrow{BC} \subseteq \ell'$ with $\overrightarrow{AD} | \overrightarrow{BC}$. B, C, D be four points in a neutral geometry, such that no three are collinear, with C and Don the same side of \overrightarrow{AB} , and $\overrightarrow{AD} \parallel \overrightarrow{BC}$. Then the set $\triangle DABC = \overrightarrow{AD} \cup \overrightarrow{AB} \cup \overrightarrow{BC}$ is is an open triangle (or a biangle).

Definition (strictly asymptotic). Let $\triangle DABC$ be an open triangle. \overrightarrow{BC} is strictly asymptotic to \overrightarrow{AD} if for every $E \in int(\measuredangle ABC)$, \overrightarrow{BE} intersects \overrightarrow{AD} .

Definition (equivalent, asymptotic). Two rays \overrightarrow{PQ} and \overrightarrow{RS} are equivalent (written $\overrightarrow{PQ} \sim \overrightarrow{RS}$) if either $\overrightarrow{PQ} \subseteq \overrightarrow{RS}$ or $\overrightarrow{RS} \subseteq \overrightarrow{PQ}$. The ray \overrightarrow{BC} is asymptotic to the ray \overrightarrow{AD} (written $\overrightarrow{BC} | \overrightarrow{AD}$) if either \overrightarrow{BC} is strictly asymptotic to \overrightarrow{AD} or $\overrightarrow{BC} \sim \overrightarrow{AD}$.

1. Prove that \sim is an equivalence relation on the set of rays in a metric geometry.

Definition (asymptotic (or closed) triangle). The open triangle $\triangle DABC$ is called an asymptotic (or closed) triangle if AD'|BC'.

Definition (asymptotically parallel). Two lines ℓ and ℓ' are asymptotic, or asymptotically parallel (written $\ell | \ell'$), if there are rays $\overrightarrow{AD} \subseteq \ell$

2. Prove that in a neutral geometry which satisfies EPP, $\ell || \ell'$ if and only if $\ell |\ell'$.

3. Let $\{S, \mathcal{L}, d, m\}$ be a neutral geometry such that whenever $\ell_1 \| \ell_2$ then there is a line ℓ' perpendicular to both ℓ_1 and ℓ_2 . Prove that EPP is satisfied.

4. Let $\triangle DABC$ be an open triangle. What should be the definition of the interior of $\triangle DABC$? Show that $int(\triangle DABC)$ is convex.

5. In a neutral geometry, suppose that $\measuredangle DABC$ is an asymptotic triangle. If $\ell \cap \operatorname{int}(\triangle DABC) \neq \emptyset$, prove that $\ell \cap \triangle DABC \neq \emptyset$.

6. In a neutral geometry, if $\overrightarrow{AB} \| \overrightarrow{CD}, \overrightarrow{CD} \| \overrightarrow{EF}$ and A - C - E prove that $\overrightarrow{AB} \parallel \overrightarrow{EF}$.

7. Let A(0,1) and D(0,2). Sketch two different asymptotic triangles $\measuredangle DABC$ in \mathcal{H} for some choices of B and C. How many are there? If E(1,1) find the unique ray \overrightarrow{EF} with $\overrightarrow{EF}|\overrightarrow{AD}$. (See 25.4)

8. In the Poincaré Plane let A(1,1) and B(1,5). (a) Sketch five rays asymptotic to \overrightarrow{AB} ; (b) Sketch five rays asymptotic to \overrightarrow{BA} .

IMPORTANT RESULTS (Asymptotic Rays and Triangles)

(25.1) In a neutral geometry if $\overrightarrow{BC} \sim \overrightarrow{B'C'}$, and $\overrightarrow{BC} | \overrightarrow{AD}$, then $\overrightarrow{B'C'} \sim \overrightarrow{AD}$.

In a neutral geometry if $\overrightarrow{AD} \sim \overrightarrow{A'D'}$, and $\overrightarrow{BC} | \overrightarrow{AD}$, then $\overrightarrow{BC} \sim \overrightarrow{A'D'}$. (25.2)

In a neutral geometry if $\overrightarrow{AD} \sim \overrightarrow{A'D'}$, $\overrightarrow{BC} | \overrightarrow{B'C'}$, and $\overrightarrow{BC} \sim \overrightarrow{AD}$ then $\overrightarrow{B'C'} \sim \overrightarrow{A'D'}$. (25.3)

(25.4) In a neutral geometry, given a ray \overrightarrow{AD} and a point $B \notin \overrightarrow{AD}$, there is a unique ray \overrightarrow{BC} with $\overrightarrow{BC}|\overrightarrow{AD}$.

(25.5) In a neutral geometry, if $\overrightarrow{BC} | \overrightarrow{AD}$ then $\overrightarrow{AD} | \overrightarrow{BC}$ also.

(25.6) Let \overrightarrow{AB} , \overrightarrow{CD} and \overrightarrow{EF} be distinct lines in a neutral geometry. If $\overrightarrow{AB} | \overrightarrow{CD}$ and $\overrightarrow{CD} | \overrightarrow{EF}$ then there is a line ℓ which intersects all three lines \overrightarrow{AB} , \overrightarrow{CD} and \overleftarrow{EF} .

(25.7) In a neutral geometry, if $\overrightarrow{AB}|\overrightarrow{CD}$ and $\overrightarrow{CD}|\overrightarrow{EF}$ then $\overrightarrow{AB}|\overrightarrow{EF}$.

(25.8) (Congruence Theorem for Asymptotic Triangles) In a neutral geometry, if $\triangle DABC$ and $\triangle SPQR$ are two asymptotic triangles with $\overline{AB} \cong \overline{PQ}$ and $\measuredangle ABC \cong \measuredangle PQR$, then $\measuredangle BAD \cong \measuredangle QPS$.

(25.9) In a neutral geometry which satisfies HPP, if two distinct lines ℓ and ℓ' have a common perpendicular, then the lines are parallel but not asymptotic.